PorePy: An Open-Source Simulation Tool for Flow and Transport in Deformable Fractured Rocks
نویسندگان
چکیده
Fractures are ubiquitous in the subsurface and strongly affect flow and deformation. The physical shape of the fractures, they are long and thin objects, puts strong limitations on how the effect of this dynamics can be incorporated into standard reservoir simulation tools. This paper reports the development of an open-source software framework, termed PorePy, which is aimed at simulation of flow and transport in three-dimensional fractured reservoirs, as well as deformation of the reservoir due to shearing along fracture and fault planes. Starting from a description of fractures as polygons embedded in a 3D domain, PorePy provides semi-automatic gridding to construct a discrete-fracturematrix model, which forms the basis for subsequent simulations. PorePy allows for flow and transport in all lower-dimensional objects, including planes (2D) representing fractures, and lines (1D) and points (0D), representing fracture intersections. Interaction between processes in neighboring domains of different dimension is implemented as a sequence of couplings of objects one dimension apart. This readily allows for handling of complex fracture geometries compared to capabilities of existing software. In addition to flow and transport, PorePy provides models for rock mechanics, poro-elasticity and coupling with fracture deformation models. PorePy provides both finite-volume and virtual finite element discretizations. The code is implemented in Python, is easy to install and configure, and can be adapted and employed by means of high-level Python scripts. The software is fully open, and can serve as a framework for transparency and reproducibility of simulations. We describe the design principles of PorePy from a user perspective, with focus on possibilities within gridding, covered physical processes and available discretizations. The power of the framework is illustrated with two sets of simulations; involving respectively coupled flow and transport in a fractured porous medium, and low-pressure stimulation of a geothermal reservoir.
منابع مشابه
Coupling Geomechanics and Transport in Naturally Fractured Reservoirs
Large amounts of hydrocarbon reserves are trapped in naturally fractured reservoirs which arechallenging in terms of accurate recovery prediction because of their joint fabric complexity andlithological heterogeneity. Canada, for example, has over 400 billion barrels of crude oil in fracturedcarbonates in Alberta, most of this being bitumen of viscosity greater than 106 cP in the GrosmontFormat...
متن کاملModeling flow and transport in unsaturated fractured rock: an evaluation of the continuum approach.
Because the continuum approach is relatively simple and straightforward to implement, it has been commonly used in modeling flow and transport in unsaturated fractured rock. However, the usefulness of this approach can be questioned in terms of its adequacy for representing fingering flow and transport in unsaturated fractured rock. The continuum approach thus needs to be evaluated carefully by...
متن کاملA New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highl...
متن کاملModeling Multiphase Non-isothermal Fluid Flow and Reactive Geochemical Transport in Variably Saturated Fractured Rocks: 1. Methodology
Reactive fluid flow and geochemical transport in unsaturated fractured rocks have received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) in...
متن کاملSPE 122456 Conceptualization and Modeling of Flow and Transport Through Fault Zones
A physically based fault conceptual model is presented for modeling multiphase flow and transport processes in fractured rock of fault zones. In particular, we discuss a general mathematical framework model for dealing with fracture-matrix interactions, which is applicable to both continuum and discrete fracture conceptualization in fault zones. In this conceptual model, faults or fault zones o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.00460 شماره
صفحات -
تاریخ انتشار 2017